Спутниковое Телевидение + Интернет весь мир у вас на экране       

   
Меню сайта
Новое на сайте
  • Новости
  • TV каналы
  • Статьи

Дополнительные сервисы



Главная » Статьи » Спутниковое и эфирное TV » Спутниковые конверторы

DiSEqC™ - описание всех вариантов протокола часть 2

Tone Burst


Технология позволяет передавать всего одну команду для управления единственным устройством - антенным переключателем 1:2. Команда передается в виде отдельной посылки тона 22 кГц ("тоновой вспышки") длительностью 12.5 мс. Для выбора входа переключателя А передается немодулированная посылка, а для выбора входа В посылка модулируется импульсами длительностью 0.5 мс с паузами 1.0 мс - такая посылка эквивалентна передаче девяти "единиц" по протоколу DiSEqC. Достоинство переключателя Tone Burst в том, что для него не нужен микроконтроллер, для распознавания такой команды достаточно несложной аналоговой схемы. В практических конструкциях (например, в популярном S-161A Tone Burst Switch шведской фирмы Emitor A.B.) используется схема на одной ИМС - "счетверенном" операционном усилителе LM324. В то же время переключатель Tone Burst сочетает достоинства антенных переключателей 0/12В и 0/22 кГц, не имея их недостатков. Он является "прозрачным" для управляющих сигналов 13/18 В и 0/22 кГц, поэтому позволяет коммутировать два конвертера "универсал", каждый из которых управляется этими сигналами, и в то же время не требует отдельного провода управления.

Если ресивер поддерживает DiSEqC и Tone Burst, то такие переключатели Tone Burst могут быть использованы совместно с переключателями или другими устройствами DiSEqC. Например, за переключателем DiSEqC 1:4 могут быть установлены 4 переключателя Tone Burst, таким образом, число конвертеров в системе может быть доведено до восьми, и все 8 могут использовать сигналы 13/18В и 0/22 кГц.

DiSEqC 1.0

Уровень 1.0 предполагает четыре команды. Первые две - Band Hi/Lo и Polarity H/V - предназначены для управления "универсальным" конвертером и призваны заменить "традиционные" сигналы переключения гетеродинов и поляризации 0/22 кГц и 13/18 В. Предполагалось, что производители быстро освоят выпуск конвертеров, поддерживающих DiSEqC 1.0/2.0. Увы, DiSEqC-конвертеры так и не появились на рынке. Практически все выпускаемые на сегодня конвертеры управляются сигналами 13/18 В, 0/22 кГц, поэтому команды Band и Polarity не используются, по крайней мере, по прямому назначению. Следующие две команды - Position A/B и Option A/B - предназначены для управления антенными переключателями. Переключатели 1:2 управляются командой Position. Для управления переключателем 1:4 используются обе команды вместе: команда Option выбирает группу входов 1-2 или 3-4, а команда Position - вход внутри группы, 1(3) или 2(4). Существуют также переключатели, логику работы которых можно изменять. Например, универсальный переключатель SUR210F немецкой фирмы SPAUN может работать как от команды Position, так и от команд Option или Band. В этом устройстве для выбора управляющей команды служит ручной переключатель, выведенный "под шлиц" на переднюю панель, в других переключателях с изменяемой логикой может быть предусмотрен более "интеллектуальный" интерфейс пользователя, например, кнопка и светодиод. Изменяя количество и длительность нажатий на кнопку, пользователь может выбрать режим работы переключателя, а светодиод индицирует его состояние. Такие переключатели на сегодня довольно редки.

 
Рис. 3. Переключатель SUR210F фирмы SPAUN.
Кроме обычных переключателей DiSEqC 1:2 и 1:4 команды DiSEqC 1.0, используются в матричных коммутаторах для коллективных систем (мультисвитчах) на 8 и более спутниковых входов. Классический пример - мультисвитч SMS9801NF фирмы SPAUN (Германия). У него 8 входов спутникового сигнала и 8 выходов для подключения ресиверов. Каждый выход подключается к тому входу, который выбран управляющими сигналами ресивера. Команда DiSEqC Position выбирает группу входов 1-4 или 5-6, сигнал 0/22 кГц - пару внутри группы 1,2 (5,6) или 3,4 (7,8), а сигнал 13/18В - нечетный или четный вход внутри пары. Ресивер программируется для работы с таким мультисвитчем так, как будто бы он работал в индивидуальной системе с переключателем DiSEqC 1:2. Команда Option остается незадействованной, поэтому ее можно использовать во внешнем переключателе. Например, с помощью тех же переключателей SPAUN SUR210F в режиме "Option" можно подключить каждый ресивер к выходам двух разных мультисвитчей - получится коллективная система на 16 спутниковых линий. При этом ресиверы будут настраиваться так, как будто они работают в индивидуальной системе с переключателем DiSEqC 1:4. Существуют мультисвитчи на 16 спутниковых входных линий и в виде законченного устройства, например, D-SEB 17x16N фирмы Ankaro (Германия).

 
Рис. 4. Матричный коммутатор на 8 спутниковых входов SMS9801NF фирмы SPAUN.
Стандарт предусматривает команды DiSEqC 1.0, изменяющие состояние каждого переключателя в отдельности. Эти команды трехбайтовые, они не содержат данных, только код команды (20…27F hex). Поддержка этих команд не обязательна, производители могут по своему усмотрению использовать либо не использовать такие команды. Обязательной для уровня DiSEqC 1.0 является единственная команда Write Port, которая сразу изменяет состояние всех четырех переключателей - Band, Polarity, Position и Option. Команда четырехбайтовая и содержит, кроме служебного байта, адреса и кода команды (38 hex), один байт данных. Формат этого байта позволяет произвести с любым переключателем не две, а три операции: установить в "0", установить в "1" или оставить в прежнем состоянии. Байт делится на две группы по четыре разряда, каждый разряд в группе соответствует одному из четырех переключателей.


 
Рис. 5. Матричный коммутатор на 16 спутниковых входов D-SEB 17x12N фирмы ANKARO.
"Единица" в старшей группе устанавливает соответствующий переключатель в "0", "единица" в младшей группе устанавливает соответствующий переключатель в "1", а "ноль" в любой группе оставляет состояние переключателя неизменным. Например, команда с байтом данных Х1ХХХ0ХХ устанавливает переключатель Position в положение А, команда с байтом данных Х1ХХХ1ХХ или Х0ХХХ1ХХ устанавливает его в положение В, а если байт данных выглядит как Х0ХХХ0ХХ, то переключатель остается в прежнем состоянии, каким бы оно ни было до прихода команды.

DiSEqC 1.1

Уровень 1.1 включает все возможности уровня 1.0 и позволяет управлять еще четырьмя переключателями, конкретное назначение которых стандартом не определено - так называемые "Uncommitted Switches". Управление осуществляется точно так же, как и четырьмя переключателями DiSEqC 1.0: обязательно поддерживается команда Write Port (39 hex), которая управляет всеми четырьмя переключателями, и могут, по желанию производителей, поддерживаться "индивидуальные" команды для каждого переключателя в отдельности (28-2F hex).

Предполагалось, что переключатели Uncommitted Switches будут, в основном, использованы в коллективных системах, в составе мультисвитчей с 32-мя и более входами. На практике мультисвитчи с таким числом входов требуются очень редко, поэтому в виде законченных изделий они не производятся. Выпускаются отдельные переключатели DiSEqC 1.1, которые используются совместно с переключателями или мультисвитчами DiSEqC 1.0 для увеличения числа входов. Пример такого переключателя - SUR420F фирмы SPAUN. Это переключатель 1:4, управляемый командами для Uncommitted Switches. Поскольку для полного управления переключателем 1:4 достаточно изменять состояния двух ключей, а ресивер DiSEqC 1.1 контролирует 4 дополнительных ключа, на передней панели SUR420F имеется ручной переключатель режимов, с помощью которого можно назначить для управления переключателем ту или иную пару ключей. Два SUR420F, работающие в разных режимах, можно включать "в каскад" - таким образом, только на этих устройствах можно построить переключатель 1:16, "прозрачный" для команд DiSEqC 1.0 и сигналов 13/18В, 0/22 кГц. Добавив переключатели DiSEqC 1:4 уровня 1.0, можно создать индивидуальную систему с числом конвертеров до 64-х. Число входов матричной системы с помощью переключателей SUR420F можно увеличить теоретически до 256-ти. Это будет выглядеть, например, так: абонентский ресивер, SUR420F, на каждом его входе - SUR420F в альтернативном режиме, в свою очередь, на каждом его входе - один из выходов одного из 16-ти мультисвитчей ANKARO D-SEB 17x16N или подобных. Разумеется, для работы с такой системой ресивер должен поддерживать DiSEqC 1.1.

 
Рис. 6. Переключатель SUR420F фирмы SPAUN.
Еще в уровень 1.1 добавлена команда установки частоты. Предполагалось, что эта возможность будет актуальна в больших коллективных системах с распределением сигнала на промежуточной частоте (SMATV). Традиционно такие системы строятся по двум схемам: на матричных коммутаторах (star distribution) или с использованием головной станции конвертеров ПЧ/ПЧ (IF/IF processors). Обе схемы имеют ряд недостатков. Система с матричными коммутаторами обеспечивает доступ любого абонента ко всем спутниковым каналам, но требует громоздкой разводки с магистралью из нескольких кабелей и дорогими мультисвитчами вместо обычных ответвителей. В системе с конвертерами ПЧ/ПЧ распределительная сеть строится по традиционной схеме "дерево", с одним магистральным кабелем, в который врезаются недорогие абонентские ответвители. Зато количество доступных абонентам спутниковых каналов ограничено количеством конвертеров на головной станции. В то же время, если конвертеров больше, чем абонентов, часть конвертеров всегда будет простаивать.

Проблема решается использованием дистанционно управляемых конвертеров ПЧ/ПЧ. На головной станции устанавливается "персональный" конвертер ПЧ/ПЧ для каждого абонента с фиксированной выходной частотой. Входные частоты конвертеров могут изменяться командами удаленных абонентских ресиверов. Таким образом, в ресивер вводится две частоты настройки. Первая - частота "персонального" канала SMATV в диапазоне 950-2150 МГц, на нее фактически настраивается демодулятор ресивера. Вторая - частота спутникового канала. В отличие от обычного режима настройки, эта частота внутри ресивера не используется, она в виде команды DiSEqC 1.1 передается на головную станцию и служит входной частотой для "персонального" конвертера ПЧ/ПЧ. Таким образом, система сочетает достоинства матричных коммутаторов и обычных конвертеров ПЧ/ПЧ: любой абонент может настроиться на любой спутниковый канал, и в то же время количество сигналов в распределительной сети равно количеству абонентов, частоты их фиксированы, а для их доставки используется простая и дешевая распределительная сеть. Уровень DiSEqC 1.1 предусматривает передачу только в одну сторону - от одного ресивера нескольким периферийным устройствам. В индивидуальной системе единственный передатчик команд - ресивер, поэтому конфликтов не возникает. В системе SMATV обратная ситуация - ресиверов много, периферийное устройство одно. Несколько передатчиков команды, передачи которых никак не синхронизированы друг с другом, не могут без конфликтов работать в одной системе. Возможна ситуация, когда две передачи совпадут по времени, в результате обе команды будут искажены или потеряны. Поэтому для передачи команды установки частоты Write Channel Frequency (58 hex) от удаленного ресивера головной станции нельзя использовать кабели системы SMATV. Используется только короткий участок коаксиального кабеля непосредственно возле ресивера. Между ресивером и абонентской розеткой должно быть установлено некое устройство (модем), которое принимало бы от ресивера команду DiSEqC и передавало бы ее на головную станцию по альтернативной линии связи. Подобные системы не получили распространения, а в нашей стране, к сожалению, коллективные спутниковые системы вообще не популярны. Тем не менее, возможность работы в составе такой SMATV поддерживают некоторые серийные ресиверы, в том числе первый "штатный" приемник "НТВ-Плюс" XCOM CDTV-300 (XSAT-300).

DiSEqC 1.2

Уровень 1.2 разработан для управления позиционером. Стандарт предполагает управление как обычным позиционером, так и двухкоординатным, предназначенным для работы с подвеской типа "азимут-угол места" или с полярной подвеской, оборудованной дополнительным "корректирующим" двигателем. Для этого в семействе адресов позиционеров (3X hex) зарезервированы отдельные адреса для оси азимута или основного двигателя полярной подвески (31 hex) и для оси угла места / корректирующего двигателя полярной подвески (32 hex). В то же время, управляющий ресивер может использовать широковещательный адрес 30 hex для обращения к любому позиционеру.

Отдельно стандарт описывает организацию электропитания двигателя позиционера. С одной стороны, проблема не имеет прямого отношения к управлению. С другой стороны, "традиционный" способ питания по отдельным проводам сводит "на нет" все преимущества управления DiSEqC, поэтому разработчики предложили целых четыре способа обойтись без них или почти без них.

 
Рис. 7. DiSEqC-позиционер SM3D12 фирмы Sat-Control.
Первый способ - питать двигатель от ресивера по цепи питания конвертера. Способ самый удобный с точки зрения установки, потому что не требует никаких дополнительных подключений. Позиционер-мотор просто включается в разрыв кабеля между ресивером и конвертером. Однако ток ресивера по входу ограничен, как правило, значением 350-500 мА, поэтому мощность получается очень маленькой, и такой способ применим лишь для систем с небольшими антеннами. Такая схема питания реализована в популярном позиционере SM3D12 фирмы Sat-Control (Словения).

Второй способ предполагает прокладку отдельных проводов. В разрыв кабеля от ресивера к конвертеру вставляется позиционер с собственным блоком питания. С одной стороны он включается в розетку, с другой стороны к нему по типичной четырехпроводной схеме подключается отдельный актюатор (два силовых провода, два провода датчика). Eutelsat рекомендует устанавливать такой позиционер не рядом с ресивером, а в самом высоком месте, где еще есть розетка 220 В, например, на чердаке. В этом случае провода для двигателя хоть и понадобятся, но они будут гораздо короче. Способ не слишком удобный, но для систем с большими и тяжелыми антеннами альтернативы нет. Кроме того, такой позиционер как нельзя лучше подойдет для модернизации старой системы, когда надо заменить ресивер (возможно, аналоговый) и позиционер без DiSEqC на цифровой ресивер с DiSEqC-позиционером, а антенну и актюатор желательно оставить без изменений. Наиболее известные варианты таких позиционеров - Globus-CD (Россия), Strong SRT V-50 (Ю. Корея), Geotrack V-Box (Тайвань).

 
Рис. 8. DiSEqC-позиционер Globus-CD (OOO "Глобус", Санкт-Петербург).
Третий способ - установить в разрыв кабеля между ресивером и DiSEqC-позиционером дополнительный источник тока, "бустер". Естественно, это устройство должно быть "прозрачным" для сигналов 13/18 В, 22 кГц и команд DiSEqC. В этом случае возникает проблема: при больших токах на омическом сопротивлении кабеля создается ощутимое падение напряжения, и, чтобы конвертер получал 13 В или 18 Вольт, ресивер должен создавать на выходе большее напряжение.

Четвертый способ: позиционер делится на два блока, внутренний, который устанавливается радом с ресивером и подключается к сети 220 В, и внешний, расположенный на антенне или непосредственно рядом с ней, к нему коаксиальным кабелем подключается конвертер и отдельными проводами - актюатор. Внутренний и внешний блоки соединяются между собой одним коаксиальным кабелем, в котором внутренний блок создает повышенное напряжение, например, 36 В. Это позволяет при небольшом токе получить достаточную мощность. Кроме того, внутренний блок принимает от ресивера сигналы 13/18 В, 22 кГц и DiSEqC и формирует в соответствии с ними специфические сигналы, которые передает внешнему блоку по тому же кабелю. Внешний блок преобразует напряжение в более низкое, восстанавливает сигналы 13/18В, 22 кГц и DiSEqC и управляет актюатором в соответствии с командами DiSEqC уровня 1.2. Так работает позиционер SatTracker® фирмы Emitor A.B. (Швеция).

DiSEqC-позиционер может быть как отдельным прибором (Strong SRT V-50, Globus-CD, SatTracker), так и входить составной частью в устройства "три в одном": позиционер, мотор, полярная подвеска (Sat-Control SM3D12). Как правило, кроме основного способа управления - командами DiSEqC, позиционер предполагает управление в полном или в ограниченном объеме с помощью собственного пульта ДУ (SatTracker) или кнопок на корпусе (Globus-CD, SRT V-50, SM3D12). Альтернативное управление необходимо при работе с ресиверами, не поддерживающими DiSEqC 1.2.

Для работы с позиционером в меню ресивера создается интерфейс пользователя, который позволяет запрограммировать позиционер: установить пределы поворота антенны, навести антенну на спутник вручную и запомнить позицию этого спутника. Далее при переключении каналов ресивер автоматически выдает команду позиционеру перевести антенну в соответствующую позицию. Ресивер не получает никакой информации собственно от позиционера, но факт наведения антенны на спутник легко фиксируется по наличию и качеству спутникового сигнала. Подсчет импульсов датчика, сохранение в энергонезависимой памяти текущего состояния счетчика, позиций спутников и пределов поворота антенны возлагаются на программное обеспечение позиционера. Ресивер только выдает команды: начать движение на восток (запад), остановить мотор, запомнить восточный (западный) предел, игнорировать пределы, запомнить позицию спутника под номером N, перейти в позицию номер N. Для удобства настройки позиционера с пульта ресивера необходимо, чтобы мотор двигался, пока кнопка на пульте нажата, и останавливался, когда она отпущена. Поэтому ресивер выдает в кабель две отдельных команды: команду начала движения при нажатии на кнопку и команду остановки при отпускании кнопки. Опционально предусмотрены два дополнительных режима движения - пошаговых, шаг может быть задан в единицах времени либо в импульсах счетчика. Вместе с командой начала движения передается байт данных, первый разряд которого определяет единицы измерения (импульсы или секунды), а остальные разряды задают величину шага. В пошаговом режиме одно нажатие на кнопку ПДУ приводит к перемещению антенны на один шаг, независимо от длительности нажатия.

В некоторых ресиверах предусмотрен "автоматический" поиск спутника. В меню ресивера пользователь вводит параметры сигнала нужного спутника и нажимает кнопку поиска. Ресивер выдает позиционеру команду начать движение в непрерывном или шаговом режиме. Как только демодулятор ресивера обнаруживает сигнал с нужными параметрами (происходит "захват" сигнала), ресивер выдает команду остановки. Такая возможность реализована, например, в ресивере General Satellite FTA-6900.

Все эти функции реализуются с использованием обязательного набора команд уровня 1.2. Команда (Re-) Calculate Satellite Positions (6F hex) является необязательной. С помощью этой команды может быть организован автоматический расчет позиций спутников. Чтобы им воспользоваться, необходимо навести антенну на спутник, который легко идентифицировать, а затем "сообщить" позиционеру орбитальную позицию спутника и географические координаты места установки антенны. Для этого команда предусматривает три байта параметров. Позиционер, имея в собственной памяти орбитальные позиции других спутников, определяет, какие из них видны в данной географической точке, и рассчитывает соответствующие им положения антенны в импульсах счетчика. Другой вариант использования этой команды - перерасчет позиций спутников, после того, как все они сдвинулись на одинаковое число импульсов. Такая ситуация может возникнуть, например, из-за обрыва или замыкания цепи датчика актюатора. В этом случае с командой передается только один параметр - позиция спутника, по которой производится пересчет. Получив команду, позиционер автоматически определяет поправку и корректирует позиции остальных спутников.

Еще две необязательных команды уровня 1.2 не относятся напрямую к работе с позиционером. Команды Write Analogue Value A0, A1 (48 hex, 49 hex) позволяют передать значения двух аналоговых параметров, разумеется, выраженные в виде двоичного числа длиной в один байт. То есть каждый параметр может принимать одно из 256 -ти значений (00-FF hex). Команда может быть использована для устройства с пропорциональным управлением, например, для механического поляризатора. Команда GoTo X.X (6E hex) непосредственно задает угол поворота в диапазоне 0-360 градусов с точностью 1/16 градуса. Для позиционера спутниковой антенны она вряд ли применима. В [4] предполагается, что команда может быть использована для управления поворотной эфирной антенной.

Для работы со старыми ресиверами, не поддерживающими уровень 1.2, почти все позиционеры DiSEqC могут управляться командами уровней 1.1 и 1.0. В этом случае команды Position и Option уровня 1.0 интерпретируются, как выбор одной из 4-х заранее запрограммированных позиций, а команды Uncommitted Switches 1…4 уровня 1.1 - как выбор одной из 16-ти позиций. Работать с позиционером в "ручном" режиме с такими ресиверами нельзя. Необходимо заранее запрограммировать пределы и позиции спутников с помощью кнопок или пульта ДУ самого позиционера (если таковые имеются) либо с помощью ресивера с DiSEqC 1.2, а затем запрограммировать ресивер с DiSEqC 1.0 или 1.1 так, как если бы он работал с обычным антенным переключателем. Разумеется, если позиционер работает под управлением команд уровня 1.0, в системе нельзя использовать переключатели DiSEqC 1.0/2.0, а если под управлением команд уровня 1.1, то можно использовать переключатели DiSEqC только уровня 1.0/2.0. В зависимости от типа позиционера, выбор режима управления может осуществляться вручную (Globus-CD, SatTracker) либо автоматически (Sat-Control SM3D12). В первом случае пользователь выбирает режим с помощью кнопок на корпусе или пульта ДУ. Во втором случае новый позиционер управляется командами DiSEqC 1.0. С получением первой команды уровня 1.2 он автоматически переходит на управление командами DiSEqC 1.2, а команды низших уровней игнорирует. В таком режиме он работает сколь угодно долго, независимо от того, включено ли питание позиционера (признак режима управления сохраняется в энергонезависимой памяти). Для того, чтобы вернуться к управлению командами низших уровней, необходимо произвести некую специфическую процедуру, например, вынуть вилку шнура питания из розетки и вновь вставить ее, удерживая нажатыми кнопки на корпусе позиционера.

Совместная работа нескольких устройств DiSEqC. Повтор команды

Несколько устройств DiSEqC могут использоваться в одной системе, но при этом должны выполняться определенные условия. Действительно, разные электронные ключи могут управляться единственной командой, но при этом физически располагаться в разных устройствах. Простой пример: два "универсальных" конвертера, поддерживающих DiSEqC 1.0, подключены к ресиверу через переключатель DiSEqC 1.0. Одна команда DiSEqC 1.0 Write Port изменяет и состояние переключателя, и состояние конвертера. В такой ситуации возникает необходимость в повторной передаче команды. Действительно, "дальнее" от ресивера устройство в момент прихода команды может вообще находиться в выключенном состоянии, потому что на "ближнем" переключателе выбран другой вход. Поэтому команду необходимо повторить: первая передача заставит "ближний" переключатель подключить "дальнее" устройство, и только вторая передача будет этим "дальним" устройством воспринята. Чтобы "дальнее" устройство успело надежно включиться и инициализироваться, между первичной и повторной передачей команды выдерживается пауза 100 мс. Повтор несколько увеличивает время переключения ресивера с канала на канал, поэтому, по замыслу создателей стандарта, должна существовать возможность принудительно отключить его в меню ресивера. Если кто-то из читателей помнит первые цифровые Strong SRT-4000, то у них такая возможность была. Уровень DiSEqC 1.0 предполагает один повтор (двукратную передачу) команды. Таким образом, если ресивер поддерживает только DiSEqC 1.0, нельзя использовать более 2-х периферийных устройств, включенных каскадно, не считая переключателя Tone Burst.

Уровень DiSEqC 1.1 предусматривает двукратный повтор команды (трехкратную передачу). Это позволяет включать "в каскад" до 3-х DiSEqC-устройств, не считая переключателя Tone Burst, который можно включать четвертым.

Команда Tone Burst всегда передается ресивером только один раз в самом конце, после всех повторов команд DiSEqC. Поэтому при использовании переключателя Tone Burst совместно с другими устройствами DiSEqC необходимо соблюдать правило: переключатель Tone Burst должен быть последним DiSEqC-устройством в цепи, дальним от ресивера и ближним к конвертеру. Например, если необходимо подключить к ресиверу 8 конвертеров, с помощью переключателей DiSEqC 1:4 и Tone Burst, следует подключать к ресиверу переключатель DiSEqC 1.0 и к его выходам - переключатели Tone Burst, а не наоборот.

DiSEqC 2.Х

Уровни 2.Х предполагают двустороннюю связь: как передачу команд от ресивера периферийным устройствам, так и ответов периферийных устройств ресиверу. Основное назначение этого уровня - автоматическое конфигурирование системы. По замыслу разработчиков, ресивер DiSEqC 2.Х должен самостоятельно обнаружить все подключенные к нему периферийные устройства, определить их типы и расположение в системе, и, возможно, их характеристики, например частоту гетеродина конвертера. Таким образом, ресивер с DiSEqC 2.Х, подобно персональному компьютеру, будет поддерживать технологию "Plug & Play".

Аппаратная реализация уровня довольно проста. Для формирования импульсов 22 кГц, 0.6 В периферийные устройства используют примитивный "модем" - ключ на одном транзисторе, включающий в цепь питания дополнительную нагрузку. Внутреннее сопротивление источника питания цепи конвертера в ресиверах, поддерживающий DiSEqC 2.Х, на частоте 22 кГц должно составлять 15 Ом. При изменении нагрузки в цепи питания изменяется ток, соответственно, изменяется падение напряжения на внутреннем сопротивлении источника. Все остальные функции второго уровня DiSEqC реализуются программно. Если ресивер отправляет на вход команду DiSEqC, требующую ответа периферийного устройства, сразу же после передачи он снимает с входа тон 22 кГц и ждет ответ в течение 150 мс.

Проблема возникает при включении ресивера, когда ему еще неизвестен состав периферийных устройств. Вполне вероятно, что одновременно к шине окажутся подключенными несколько устройств с одинаковыми адресами. Эти устройства будут пытаться одновременно ответить на запрос ресивера, что неизбежно приведет к конфликту. Чтобы избежать такой ситуации, во время инициализации желательно иметь в системе одновременно не более одного устройства, "прослушивающего" шину. Это требование почти всегда можно выполнить благодаря "цепочечной" архитектуре типичной системы: непосредственно к ресиверу подключено только одно устройство, следующие устройства подключены через первое и т.д. После включения питания каждое устройство размыкает цепь прохождения команд DiSEqC дальше по шине. В результате "слышит" шину только одно устройство - ближайшее к ресиверу. Ресивер дает команду "вернуть адрес" и по ответу распознает это устройство. Затем ресивер командует известному устройству сменить свой адрес по умолчанию на новый адрес, уникальный в данной системе. Только после того, как устройство получит новый адрес, оно замкнет цепь и разрешит прохождение команды к одному из устройств следующей ступени. Далее ресивер вновь выдает команду "вернуть адрес", по ответу распознает следующее устройство и так далее. Сколько каскадно включенных устройств можно будет автоматически обнаружить и распознать, зависит только от "интеллекта" программного обеспечения ресивера.

Однако архитектура сложных спутниковых систем может быть нетипичной, и вероятность того, что два устройства с одним адресом окажутся подключенными к ресиверу одновременно, все же существует. Для таких случаев предусмотрена процедура арбитража. Применяемый протокол сходен с протоколом CSMA/CD, который используется для разрешения конфликтов в технологии локальных сетей Ethernet, также основанной на подключении всех устройств к одной общей шине. Прежде чем ответить на первую после включения питания команду ресивера, периферийное устройство "прослушивает" кабель в течение некоторого промежутка времени, длительность которого выбирается в пределах 15-115 мс по случайному закону. Не обнаружив сигналов других устройств, это устройство передает свой ответ в кабель. Если за это время устройство обнаруживает чужую передачу, оно прерывает собственную попытку передачи, выставляет внутренний флаг "шина занята", выжидает около 130 мс, а затем передает свой ответ. Время ожидания выбрано заведомо большим, чем максимальная задержка ответа, это гарантирует, что не возникнет коллизия с передачей устройства, выигравшего арбитраж.

Ресивер может обнаружить присутствие нескольких устройств с одинаковым адресом разными способами. Он может просто выждать после первого ответа время, большее, чем время паузы, предусмотренной протоколом арбитража. Второй способ - передать специальную команду, обращенную только к тем устройствам, у которых установлен флаг "шина занята". Третий способ, который стандартом рассматривается, как предпочтительный: после первого ответа ресивер заставляет известное ему устройство изменить свой адрес, а затем повторяет запрос со старым адресом. Чтобы не повторять сложную процедуру инициализации при следующем включении питания, ресивер, по идее, должен сохранить конфигурацию системы в своей энергонезависимой памяти.

К сожалению, ресиверов, в полном объеме поддерживающих DiSEqC 2.Х, пока нет. В то же время, значительная часть периферийного оборудования (антенные переключатели, мультисвитчи DiSEqC2.0) уже готова к работе с такими ресиверами.

Надеюсь, настоящая статья поможет пользователям правильно выбрать нужное оборудование DiSEqC и грамотно использовать его в индивидуальных и коллективных спутниковых системах. Замечания и отзывы о статье можно направлять по адресу: gleb@telesputnik.ru.




Mirant.Kiev.ua
Категория: Спутниковые конверторы | Добавил: sputnik-tv (23-12-2008)
Просмотров: 7085 | Рейтинг: 0.0/0
Спутниковое и эфирное ТВ [119]
Цифровое эфирое DVB-T2 [3]
Ремонт спутникового [36]
Cпутниковыe ресиверы [62]
Спутниковые конверторы [8]
FAQ о спутниковом ТВ [69]
Спутниковые антенны [11]
  • Комментарии
  • Комментарии

Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Реклама

Статистика



Сейчас на сайте: 9
Гостей: 9
Пользователей: 0